Українською
  In English
Новини світу мікро- та наноелектроніки
I made a camera from an optical mouse. 30x30 pixels in 64 glorious shades of gray!
| | I was digging through some old stuff and found a PCB from a mouse I'd saved long ago specifically because I knew it was possible to read images from them. The new project itch struck and after 65 hours, I made this! Features: It was a fun design challenge to make this thing as small as I could, the guts are completely packed. There's a ribbon cable connecting the electronics in the two halves, I tried to cram in a connector (0.05" pitch header) but it was too bulky to fit. The panorama "smear shot" is definitely my favorite mode, it scans out one column at a time across the screen as you sweep the camera. It's scaled 2x vertically but 1x horizontally, so you get extra "temporal resolution" horizontally if you do the sweep well. The construction style is also something I enjoy for one-off projects. No PCB, just cobble together stuff I've got plus whatever extra parts I need and design the case to fit. If I ever made more I'd make a board for sure (and it would shrink the overall size), but it's fun to hand-make stuff like this. Despite the low resolution, it's easily possible to take recognizable pictures of stuff. The "high" color depth certainly helps. I'd liken it to the Game Boy Camera (which I also enjoy), which is much higher resolution but only has 4 colors! I tried to post a video for you all but they're not allowed here. :( I'll link it in the comments once I cross-post to another subreddit. [link] [comments] |
First time making a real plasma toroidal discharge in a glass sphere
I made a simple push pull oscillator circuit that has no problem lighting up stable toroidal discharges. It works so well, much better than those single transistor class e oscillator circuit you find everywhere, they always have a hard time igniting the discharge. My project draws about 40W and at most about 100W, I think it is a lot, but the effects it creates are fun to watch.
[link] [comments]
Weekly discussion, complaint, and rant thread
Open to anything, including discussions, complaints, and rants.
Sub rules do not apply, so don't bother reporting incivility, off-topic, or spam.
Reddit-wide rules do apply.
To see the newest posts, sort the comments by "new" (instead of "best" or "top").
[link] [comments]
Computer-on-module architectures drive sustainability

Sustainability has moved from corporate marketing to a board‑level mandate. For technology companies, this shift is more than meeting environmental, social, and governance frameworks; it reflects the need to align innovation with environmental and social responsibility among all key stakeholders.
Regulators are tightening reporting requirements while investors respond favorably to sustainable strategies. Customers also want tangible progress toward these goals. The debate is no longer about whether sustainability belongs in technology roadmaps but how it should be implemented.
The hidden burden of embedded and edge systemsElectronic systems power a multitude of devices in our daily lives. From industrial control systems and vital medical technology to household appliances, these systems usually run around the clock for years on end. Consequently, operating them requires a lot of energy.
Usually, electronic systems are part of a larger ecosystem and are difficult to replace in the event of failure. When this happens, complete systems are often discarded, resulting in a surplus of electronic waste.
Rapid advances in technology make this issue more pronounced. Processor architectures, network interfaces, and security protocols become obsolete in shorter cycles than they did just a few years ago. As a result, organizations often retire complete systems after a brief service life, even though the hardware still meets its original requirements. The continual need to update to newer standards drives up costs and can undermine sustainability goals.
Embedded and edge systems are foundational technologies driving critical infrastructure in industrial automation, healthcare, and energy applications. As such, the same issues with short product lifecycles and limited upgradeability put them in the same unfortunate bucket of electronic waste and resource consumption.
Bridging the gap between performance demands and sustainability targets requires rethinking system architectures. This is where off-the-shelf computer-on-module (COM) designs come in, offering a path to extended lifecycles and reduced waste while simultaneously future-proofing technology investments.
How COMs extend product lifecyclesOpen embedded computing standards such as COM Express, COM-HPC, and Smart Mobility Architecture (SMARC) separate computing components—including processors, memory, network interfaces, and graphics—from the rest of the system. By separating the parts from the whole, they allow updates by swapping modules instead of by requiring a complete system redesign.
This approach reduces electronic waste, conserves resources, and lowers long‑term costs, especially in industries where certifications and mechanical integration make complete redesigns prohibitively expensive. These sustainability benefits go beyond waste reduction: A modular system is easier to maintain, repair, and upgrade, meaning fewer devices end up prematurely as electronic waste.
Recommended Why system consolidation for IT/OT convergence matters
Open standards that enable longevityTo simplify the development and manufacturing of COMs and to ensure interchangeability across manufacturers, consortia such as the PCI Industrial Computer Manufacturing Group (PICMG) promote and ratify open standards.
One of the most central standards in the embedded sector is COM Express. This standard defines various COM sizes, such as Type 6 or Type 10, to address different application areas; it also offers a seamless transition from legacy interfaces to modern differential interfaces, including DisplayPort, PCI Express, USB 3.0, or SATA. COM Express, therefore, serves a wide range of use cases from low-power handheld medical equipment to server-grade industrial automation infrastructure.
Expanding on these efforts, COM-HPC is the latest PICMG standard. Addressing high-performance embedded edge and server applications, COM-HPC arose from the need to meet increasing performance and bandwidth requirements that previous standards couldn’t achieve. COM-HPC COMs are available with three pinout types and six sizes for simplified application development. Target use cases range from powerful small-form-factor devices to graphics-oriented multi-purpose designs and robust multi-core edge servers.
COM-HPC, including congatec’s credit-card-sized COM-HPC Mini, provides high performance and bandwidth for all AI-powered edge computing and embedded server applications. (Source: congatec)
Alongside COM Express and COM-HPC, the Standardization Group for Embedded Technologies developed the SMARC standard to meet the demands of power-saving, energy-efficient designs requiring a small footprint. Similar in size to a credit card, SMARC modules are ideal for mobile and portable embedded devices, as well as for any industrial application that requires a combination of small footprint, low power consumption, and established multimedia interfaces.
As credit-card-sized COMs, SMARC modules are designed for size-, weight-, power-, and cost-optimized AI applications at the rugged edge. (Source: congatec)
As a company with close involvement in developing COM Express, COM-HPC, and SMARC, congatec is invested in the long-term success of more sustainable architectures. Offering designs for common carrier boards that can be used for different standards and/or modules, congatec’s approach allows product designers to use a single carrier board across many applications, as they simply swap the module when upgrading performance, removing the need for complex redesigns.
Virtualization as a path to greener systemsOn top of modular design, extending hardware lifecycles requires intelligent software management. Hypervisors, a software tool that creates and manages virtual machines, add an important software layer to the sustainability benefits of COM architectures.
Virtualization allows multiple workloads to coexist securely on a single module, meaning that separate boards aren’t required to run essential tasks such as safety, real-time control, and analytics. This consolidation simultaneously lowers energy consumption while decreasing the demand for the raw materials, manufacturing, and logistics associated with more complex hardware.
Hypervisors such as congatec aReady.VT are real-time virtualization software tools that consolidate functionality that previously required multiple dedicated systems in a single hardware platform. (Source: congatec)
Enhancing sustainability through COM-based designs
The rapid adoption of technologies such as edge AI, real‑time analytics, and advanced connectivity has inspired industries to strive for scalable platforms that also meet sustainability goals. COM architectures are a great example, demonstrating that high performance and environmental responsibility are compatible. They show technology and business leaders that designing sustainability into product architectures and technology roadmaps, rather than treating it as an afterthought, makes good practical and financial sense.
With COM-based modules already providing a flexible and field-proven foundation, the embedded sector is off to a good start in shrinking environmental impact while preserving long-term innovation capability.
The post Computer-on-module architectures drive sustainability appeared first on EDN.
Solar-powered cars: is it “déjà vu” all over again?

I recently came across a September 18 article by the “future technology” editor at The Wall Street Journal, “Solar-Powered Cars and Trucks Are Almost Here” (sorry, behind paywall, but your local library may have free access). The author was positively gushing about companies such as Aptera Motors (California), which will “soon” be selling all-solar-powered cars. On a full daylight charge, they can do a few tens of miles, then it’s time to park in the Sun for that totally guilt-free “fill up.”
Figure 1 The Aptera solar-powered three-wheel “car” can go between 15 and 40 miles on a full all-solar charge. Source: Aptera Motors
The article focused on the benefits and innovations, such as how Aptera claims to have developed solar panels that withstand road hazards, including rocks kicked up at high speed, and similar advances.
The solar exposure-versus-distance numbers are very modest, to be polite. While people living in a sunny environment could add up to 40 miles (64 km) of range a day in summer months, from panels alone, that drops to around 15 miles (24 km) a day in northern climates in winter. Aptera says its front-wheel-drive version goes from 0 to 60 mph (96 km/hour) in 6 seconds, and has a top speed of 101 mph (163 km/hr).
The article also mentions that Aptera is planning to sell its ruggedized panels to Telo Trucks, a San Carlos (Calif) maker of a 500-horsepower mini-electric truck estimated to ship next year, which uses solar panels to extend its range by 15 to 30 supplemental miles per day.
Then I closed my eyes and thought, “Wait, haven’t I heard this story before?” Sure enough, I looked through my notes and saw that I had commented on Aptera’s efforts and those of others back in a 2021 blog, “Are solar-powered cars the ultimate electric vehicles?” Perhaps it’s no surprise, but the timeline then was also “coming soon.”
The laws of physics conspire to make this a very tough project. This sort of ambitious project requires advances across multiple disciplines. There are the materials for the vehicle itself, batteries, rugged solar panels, battery-management electronics — it’s a long list. These are closely tied to key ratios beginning with power and energy to weight.
Did I mention it’s a three-wheel vehicle (with all the stability issues that brings), seats two people, and is technically classified as a motorcycle despite its fully enclosed cabin? Or that it has to meet vehicle safety mandates and regulations? Will drivers likely need power-draining air conditioning unless they drive open-air, especially as the vehicle needs to be parked in the sun by definition?
I don’t intend to disparage the technological work, innovation, and hard work (and money) they have put into the project. Nonetheless, no matter how you look at it, it’s a lot of effort and retail price (estimated to be around $40,000) for a modest 15 to 40 miles of range. That’s a lot of dollar pain for very modest environmental gain, if any.
Is the all-electric vehicle analogous to the flying car?
Given today’s technology and that of the foreseeable future, I think the path of a truly viable all-solar car (at any price) is similar to that other recurrent dream: the flying car. Many social observers say that the hybrid vehicle (different meaning of “hybrid” here, of course) was brought into popular culture in 1962 by the TV show The Jetsons – but there had been articles in magazines such as Popular Science even before that date.

Figure 2 The flying car that is often discussed was likely inspired by the 1962 animated series “The Jetsons.” Source: Thejetsons.fandom.com
Roughly every ten years since then, the dream resurfaces and there’s a wave of articles in the general media about all the new flying cars under development and road/air test, and how actual showroom models are “just around the corner.” However, it seems like we are always approaching but not making the turn around that corner; Terrafugia’s massive publicity wave, followed by subsequent bankruptcy, is just one example.
The problem for flying cars, however attractive the concept may be, is that the priority needs and constraints for a ground vehicle, such as a car, are not aligned with those of an aircraft; in fact, they often contradict each other.
It’s difficult enough in any vehicle-engineering design to find a suitable balance among tradeoffs and constraints – after all, that’s what engineering is about. For the flying car, however, it is not so much about finding the balance point as it is about reconciling dramatically opposing issues. In addition, both classes of vehicles are subject to many regulatory mandates related to safety, and those add significant complexity.
Sometimes, it’s nearly impossible to “square the circle” and come up with a viable and acceptable solution to opposing requirements. Literally, “to square the circle” refers to the geometry challenge of constructing a square with the same area as a given circle but using only a compass and straightedge, a problem posed by the ancient Greeks and which was proven impossible in 1882. Metaphorically, the phrase means to attempt or solve something that seems impossible, such as combining two fundamentally different or incompatible things.
What’s the future for these all-solar “cars”? Unlike talking heads, pundits, and journalists, I’ll admit that I have no idea. They may never happen, they may become an expensive “toy” for some, or they may capture a small but measurable market share. Once prototypes are out on the street getting some serious road mileage, further innovations and updates may make them more attractive and perhaps less costly—again, I don’t know (nor does anyone).
Given the uncertainties associated with solar-powered and flying cars, why do they get so much attention? That’s an easy question to answer: they are fun and fairly easy to write about and the coverage gets attention. After all, they are more exciting to present and likely to attract more attention than silicon-carbide MOSFETs.
What’s your sense of the reality of solar-powered cars? Are they a dream with too many real-world limitations? Will they be a meaningful contribution to environmental issues, or an expensive virtue-signaling project—assuming they make it out of the garage and become highway-rated, street-legal vehicles?
Bill Schweber is an EE who has written three textbooks, hundreds of technical articles, opinion columns, and product features.
Related Content
- Are solar-powered cars the ultimate electric vehicles?
- Keep solar panels clean from dust, fungus
- Home solar-supply topologies illustrate tradeoff realities
- Solar-Driven TEG Advances via Fabrication, Not Materials
References
- Smithsonian Magazine, “Recapping ‘The Jetsons’: Episode 03 – The Space Car”
- Popular Science, “The Flying Car Gets Real”(2008)
- Aircraft Owners and Pilots Association, “AOPA Terrafugia pulls US plug on Transition flying car” (2021)
The post Solar-powered cars: is it “déjà vu” all over again? appeared first on EDN.
The next RISC-V processor frontier: AI

The RISC-V Summit North America, held on 22-23 October 2025 in Santa Clara, California, showcased the latest CPU cores featuring new vector processors, high-speed interfaces, and peripheral subsystems. These CPU cores were accompanied by reference boards, software design kits (SDKs), and toolchains.
The show also provided a sneak peek of the RISC-V’s design ecosystem, which is maturing fast with the RVA23 application profile and RISC-V Software Ecosystem (RISE), a Linux Foundation project. The emerging ecosystem encompasses compilers, system libraries, language runtimes, simulators, emulators, system firmware, and more.
“The performance gap between high-end Arm and RISC-V CPU cores is narrowing and a near parity is projected by the end of 2026,” said Richard Wawrzyniak, principal analyst for ASIC, SoC and IP at The SHD Group. He named Andes, MIPS, Nuclei Systems, and SiFive as market leaders in RISC-V IP. Wawrzyniak also mentioned new entrants such as Akeana, Tenstorrent, and Ventana.
Andes, boasting 20 years of expertise in the semiconductor IP business, was a prominent presence in the corridors of the RISC-V Summit in Santa Clara. It’s a founding member of RISC-V International and a pure-play IP vendor. At the RISC-V Summit, Andes displayed its processor lineup, including AX45, AX46, AX66, and Cuzco.

Figure 1 The processor lineup was showcased at the RISC-V Summit in Santa Clara. Source: Andes
Andes claims that these RISC-V processors, featuring powerful compute and efficient control, provide the architectural diversity required in artificial intelligence (AI) applications. AX45 and AX46 processors have been taped out and are shipping in volumes. Here, Andes also provides in-chip firmware, tester software, on-board software, and on-cloud software as part of its hardware IP monitoring offerings.
Though RISC-V is enjoying a robust deployment in automotive, Internet of Things (IoT), and networking, AI was all the rage on the RISC-V Summit floor. “If RISC-V has a tailwind, it’s AI,” Wawrzyniak said.
RISC-V world’s AI moment
Andes claims it’s driving RISC-V into the AI world with features such as advanced vector processing. And that its RISC-V processors are powering devices from the battery-sipping edge to high-performance data centers. Andes also claims that 38% of its revenue comes from AI designs.
Companies like Andes can also bring differentiation and efficiency to AI processor designs through automated custom extensions. “We are getting there, and the deployment speed is impressive,” said Dr. Charlie Su, president and CTO of Andes Technology.

Figure 2 Meta deployed two generations of AI accelerators for training and inference using RISC-V vector/scalar cores. Source: Andes
“RISC-V is getting better for AI applications in data centers,” said Ty Garibay, president of Condor Computing. “RVA23 has a massive investment in features for data center-class AI designs.” Condor Computing, a wholly owned subsidiary of Andes, founded in 2023, develops high-performance RISC-V IPs and is based in Austin, Texas.
Wawrzyniak of SHD Group acknowledges that AI applications are driving the adoption of RISC-V-enabled system-on-chips (SoCs). “The heterogeneous nature of SoCs has created opportunities for multiple CPU architectures,” he said. “These SoCs can support both RISC-V and other ISAs, allowing applications to pick the best core for each function.”
Moreover, the diverse needs for AI acceleration are fueling the demand for RISC-V. “RISC-V CPU IP vendors can more easily introduce new and more powerful CPU cores, which extends the reach of RISC-V into AI applications that require greater compute power,” Wawrzyniak said.
During his keynote, Wawrzyniak said that initial RISC-V deployments were driven by embedded applications such as networking, smart sensors, storage, and wearables. “RISC-V is now transitioning to higher-end applications like ADAS and data centers as AI expands to those applications.”
RISC-V processor duo
At the RISC-V Summit, Andes provided more details about its new application processors. It showcased AX66, a mid-range application processor, and Cuzco, a high-end application processor; both are RVA23-compliant. AX66—incorporating up to 8 cores—features dual vector pipes with VLEN=128 and front-end decode 4-wide. It has a shared L3 cache of up to 32 MB.

Figure 3 AX66 is a 64-bit multicore CPU IP for developing a high-performance quad-decode 13-stage superscalar out-of-order processor. Source: Andes
On the higher end, Cuzco features time-based scheduling with a time resource matrix to determine instruction issue cycles after decoding, thereby reducing logic complexity and dynamic power for wide machines. Cuzco’s decode is either 6-wide or 8-wide, and it has 8 execution pipelines (2 per slice).
Cuzco incorporates up to 8 cores and offers a shared L3 cache of up to 256 MB. The Cuzco RISC-V processor has been implemented at 5-nm nodes with 8 execution pipelines and 7 million gates. It features an L2 configuration with 2MB and is targeted for a 2.5-GHz speed.

Figure 4 The Cuzco design represents the first in a new class of RISC-V CPUs aimed at data center-class performance while maintaining power efficiency and area benefits. Source: Andes
For the development of these RISC-V processors, the AndeSight integrated development environment (IDE) helps design engineers generate files for LLVM to recognize new instructions. Then there is AndesAIRE software, which facilitates graph-level optimization for pruning and quantization as well as back-end-aware optimization for fusion and allocation.
For OS support, the processors comply with RVA22 and RVA23 profiles and SoC hardware and software platforms. Andes also provides additional support to ensure that the Linux kernel is upstream-compatible.
Cuzco, unveiled at Hot Chips 2025 earlier this year, features a time-based out-of-order microarchitecture engineered to deliver high performance and efficiency across compute-intensive applications in AI, data center, networking, and automotive markets. Andes provided a preview of this out-of-order CPU at the RISC-V Summit.
Condor Computing developed the Cuzco RISC-V core, which is fully integrated into the Andes toolchain and ecosystem. Condor recently completed full hardware emulation of its new CPU IP while successfully booting Linux and other operating systems.
“Condor’s microarchitecture combines advanced out-of-order execution with novel hardware techniques to dramatically boost performance-per-watt and silicon efficiency,” Andes CTO Su said. “It’s ideally suited for demanding CPU workloads in AI, automotive compute, applications processing, and beyond.”
The first customer availability of the Cuzco RISC-V processor is expected in the fourth quarter of 2025.
The RISC-V adoption
According to Wawrzyniak, chip designers are now looking at both Arm and RISC-V processor architectures. “The RISC-V ISA and its rising ecosystem have interjected competition once again into the SoC design landscape.”
Furthermore, the custom RISC-V ISA extensions empower innovation and tailored performance. Not surprisingly, therefore, the adoption of RISC-V by large technology companies such as Broadcom, Google, Meta, MediaTek, Qualcomm, Renesas, and Samsung continues to validate the utility of the RISC-V ISA in the semiconductor industry.
RISC-V, once an academic exercise, has come a long way since its launch in May 2010 at the University of California, Berkley. However, as Krste Asanovic, chief architect at SiFive, said during his keynote, RISC-V will continue to evolve across different verticals and that it’ll be around for a long time.
Related Content
- Navigating the RISC-V Revolution in Europe
- RISC-V Summit spurs new round of automotive support
- RISC-V Exceeding Expectations in AI, China Deployment
- Why RISC-V is a viable option for safety-critical applications
- Why RISC-V + Blockchain Is the Conversation I’ve Been Waiting to Have
The post The next RISC-V processor frontier: AI appeared first on EDN.



